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Abstract. A mathematical framework for the coupling of atomistic and continuum models
by blending them over a subdomain subject to a constraint is developed. Using the framework,
four classes of atomistic-to-continuum (AtC) blending methods are established, their consistency is
studied, and their relative merits discussed. In addition, the framework helps clarify the origin of
ghost forces and formalizes the notion of a patch test. Numerical experiments with the AtC methods
are used to illustrate the theoretical results.

Key words. atomistic-to-continuum coupling, blending methods, multiscale simulation, cou-
pling methods

AMS subject classifications. 65N30, 65N55,74G15

1. Introduction. Fully atomistic simulations on an entire model domain are
computationally infeasible for many applications of interest. In such cases, a common
practice is to replace the atomistic model by a continuum model in all regions where
the solution is sufficiently smooth. The two models must then somehow be tied
together in an interface region, using a suitable “continuity” condition, or balance
principle, for the atomistic and continuum positions or displacements.

Merging of atomistic and continuum models is fundamentally different from merg-
ing two continuum models. Because the atomistic model is non-local, one cannot
simply truncate it to a subregion; care must be taken to compensate for possible
surface effects created by missing bonds. Typically, this means that an atomistic-to-
continuum (AtC) coupling method cannot rely solely on transmission conditions at a
surface. The main focus of this paper is on AtC coupling methods for material statics
problems that, in d dimensions, glue the two models over a d-dimensional blending
region rather than at a d− 1-dimensional manifold.

The roles of a blended model are first, to provide the correct material response
in the blending regions and second, to couple the two models by enforcing the “conti-
nuity” of the atomistic and continuum solutions. Typically, such models are defined
using blending functions that form a partition of unity in the blending region, and
constraint equations that enforce “continuity” between atomistic and continuum so-
lutions in that region. The constraints may be imposed by either

• using Lagrange multipliers, or
• imposing them directly on the degrees of freedom.

The two approaches lead to different AtC operators but are mathematically equiva-
lent. Our analyses exploits this equivalence by relying on the simpler mathematical
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structure resulting from the second means of enforcing the constraint.
A straightforward way to couple atomistic and continuum models is to superim-

pose the two models in the blending region. Unfortunately, this additive approach
leads to unphysical behavior because the resulting energy of the system effectively
sums the atomistic and continuum contributions to the energy. To avoid this dupli-
cation, the two models must be “blended” together in such a way that the coupled
model has the desired physical response. One of our goals will be to state mathe-
matical criteria to quantify such responses by formalizing the notions of patch and
consistency tests.

The difference between additive and blended couplings can be further explained
as follows. Let the problem domain Ω be partitioned into an atomistic region Ωa, a
continuum region Ωc, and a d-dimensional blending region Ωb; see Figure 1.1. Let

ΩΩΩΩcΩΩΩΩb ΩΩΩΩa 
Fig. 1.1. The atomistic domain (left), the continuum domain(right), and the blending domain

(center).

La and Lc denote (generally nonlinear) atomistic and continuum operators acting on
Ωa ∪ Ωb and Ωb ∪ Ωc, respectively.1 A blending approach to AtC coupling requires
the construction of blended operators Laθ and Lcθ defined by a partition of unity in Ωb
and such that Laθ = La on Ωa, Lcθ = Lc on Ωc. Assume that the atomistic and con-
tinuum solutions are connected to each other on Ωb using a linear constraint operator
C = (Ca Cc), where Ca and Cc act on the atomistic and continuum variables, respec-
tively. Using Lagrange multipliers to enforce the constraint results in the blended
AtC operator  L

a
θ 0 Cta

0 Lcθ Ctc
Ca Cc 0

 .

Owing to the definitions of Laθ and Lcθ, no blending occurs outside of Ωb. In contrast,
an additive coupling method corresponds to an AtC operator of the form L

a 0 Cta
0 Lc Ctc
Ca Cc 0

 ,

in terms of the original atomistic and continuum operators. As a result, the energy in
Ωb is counted twice; this leads to an unphysical response of this coupled AtC model.

1In Ωb, both models apply.
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AtC coupling via blending is a relatively recent development. In [3], a blending of
atomistic and continuum energy functionals was suggested and Lagrange multipliers
used for enforcing a set of constraints in the blending domain. The extension to the
transient case was considered in [4]. Blending methods for coupling atomistic and
continuum equations based on mechanical arguments have recently been proposed
in [1,11]. The Arlequin method introduced in [9] investigated continuum-to-continuum
blending. The recent paper [2] presents an analysis of the Arlequin method for a one-
dimensional model problem.

The goal of this paper is to develop an abstract framework for AtC coupling
methods that can facilitate their formulation and analysis. To provide rigorous criteria
for assessing different AtC coupling methods, we also formalize the notions of patch
and consistency tests. We are motivated by the increased interest in AtC coupling
approaches that is driven by simulation needs in nanotechnology and material sciences.
These simulation needs have resulted in the creation of many ad-hoc AtC coupling
methods that, in many cases, are loosely defined and focused on specific problems.
This situation makes the analysis of these methods difficult, even though some efforts
have been made in this direction, including analyses of the quasi-continuum method
for simple systems [5, 14, 15] and the application of adaptivity and a posteriori error
estimation ideas [17].

Using the abstract mathematical framework, we can carry out consistency anal-
yses of AtC blended models. Furthermore, the framework explains the origin of
so-called ghost forces, and the satisfaction of Newton’s third law.

The outline of the paper is as follows. Prototype atomistic and continuum models
are introduced in Section 2. The canonical form of a blended AtC method is stated
in Section 3. There, we also address the issues of consistency and ghost forces. The
abstract AtC framework and four classes of AtC methods are presented in Section
4. The results of some computational studies are presented in Section 5. Concluding
remarks are given in Section 6.

1.1. Notation. We use double fonts (A) for sets of atoms,2 simple upper-case
fonts (A) for atomistic and continuum spaces, calligraphic fonts (L) for operators
and functionals, lower-case bold letters (a) for vector-valued continuum functions,
lower-case bold Greek letters (α) for vector-valued atomistic (discrete) functions and
Lagrange multipliers.

Dual spaces are denoted by (·)′. In general, discrete and continuous L2 inner prod-
ucts, L2 norms, and duality pairings are denoted by (·, ·), ‖·‖, and 〈·, ·〉, respectively.
Additional notation will be introduced as needed.

Our convention for designating spaces and affine spaces is as follows: X and
Y refer to atomistic and continuum spaces, respectively; a zero subscript, e.g., X0

indicates that the elements of the space satisfy homogeneous boundary conditions;
the subscript D, e.g., XD denotes the (affine) space whose elements satisfy specified
inhomogeneous boundary conditions; a lack of subscript, e.g., X, indicates an un-
constrained space; a superscript indicates the support of the elements of the space,
e.g., Xab denotes that the elements of the space are supported on Ωa ∪ Ωb; a lack of
superscript, e.g., X, indicates that the elements of the space are supported on all of
Ω.

2The exception to this rule is that Rd is used to denote d-dimensional Euclidean space and
R = R1.
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2. The atomistic and continuum models. In this section, we review the
atomistic and continuum models that form the basis for the blended AtC coupling
models that are the subject of this paper.

2.1. The atomistic model. We consider an undeformed (or reference) lattice
P of identical particles located in a bounded, Euclidean region Ω ⊂ Rd. The spatial
position vectors of the particle α ∈ P in the undeformed and deformed configurations
are denoted by xα and qα, respectively. Thus, the displacement vector of that particle
is ψα = qα − xα. The finite-dimensional space of possible atomistic displacements is
denoted by X. An element φ ∈ X is simply a set of properly ordered3 |P| × d scalar
values φiα for α ∈ P and i = 1, . . . , d.

We denote by D ⊂ P the subset of particles whose positions in the deformed
configuration are fixed.4 We then introduce the affine space of displacements that
satisfy the constraints imposed on the particles belonging to D:

XD := {φ ∈ X | φα = ψD
α ∀α ∈ D},

where ψD
α is the given, fixed displacement vector for the constrained particle α ∈ D.

Similarly, we have the subspace for which the particles belonging to D have zero
displacements:

X0 := {φ ∈ X | φα = 0 ∀α ∈ D}.

The lattice statics problem consists of finding an equilibrium (deformed) configu-
ration {ψα}α∈P\D that minimizes the potential energy of the particle system, subject
to the constraint

(2.1) ψα = ψD
α ∀α ∈ D.

The minimizer is found by solving the following force-balance problem: given ψD
α for

all α ∈ D, find ψ ∈ XD such that5

(2.2)
(
F(ψ)

)
α

+ χα = 0 ∀α ∈ P \ D,

where F : X → X is a (generally non-linear) operator, (F(·))α denotes the internal
forces acting on the particle α due to the other particles in P, and χα is the external
force applied to the particle α. Note that since ψ ∈ XD, (2.1) is satisfied. Eq. (2.2)
is simply Newton’s second law for a system of particles interacting via the forces F
and the applied forces χ, and constrained to satisfy (2.1).

A weak formulation of (2.2) is given as follows: find ψ ∈ XD such that

(2.3) Ba(ψ,φ) = Ga(φ) ∀φ ∈ X0,

where6

(2.4) Ba(ψ,φ) = (F (ψ),φ) and Ga(φ) = − (χ,φ) for ψ ∈ X and φ ∈ X0.

3| · | denotes the cardinality of the set.
4In practice, this is a set of particles that are positioned within a layer of the boundary where the

displacement is data. This set is the atomistic counterpart of the Dirichlet boundary for a continuum
problem.

5In general, (2.2) and its weak counterpart (2.3) may not have unique solutions.
6The (generally non-linear) operator La introduced in Section 1 is the operator corresponding to

the functional Ba(·, ·), i.e., we have that La : X → X′ satisfies

Ba(ψ,φ) = 〈Laψ,φ〉 ∀φ ∈ X.
Similar correspondences hold for the other operators Lc, Laθ , and Lcθ introduced in Section 1 and the
functionals Bc(·, ·), Baθ (·, ·), and Bcθ(·, ·), respectively, introduced below.
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Remark 1. Equation (2.3) is the principle of virtual work. Note that the space
of test functions is constrained to have vanishing displacements for the particles in
D, i.e., the only variations allowed are those for the particles whose positions are not
constrained by (2.1). �

Remark 2. It is important to note that force balance equations (2.2) are inherently
non-local in nature, i.e., in general, the force acting on a particle α ∈ P \ D depends
on the displacements of many other particles. �

2.2. The continuum model. The spatial position vectors in the undeformed
and deformed configurations are denoted by x and q, respectively. Thus, the displace-
ment vector is given u = q−x. The strong form of the continuum model is given by

Lcu = f in Ω,(2.5a)
u = u∂Ω on ∂Ω,(2.5b)

where Lc denotes a (possibly nonlinear) differential operator, f the external force,
∂Ω the boundary of Ω, and u∂Ω the prescribed boundary data.7 It is important to
note that we assume that the system (2.5) is a local model, e.g., the stress at a point
x ∈ Ω depends on u and ∇u at that point and not at other points in Ω. This is in
contrast to the atomistic model; see Remark 2.

Regarding (2.5) we assume that there exist differential operators8 S(·) and E(·)
such that

〈Lcu,v〉 =
∫

Ω

S(u) : E(v)dx

for all smooth functions u and v with v = 0 on ∂Ω; (·) : (·) denotes the scalar
tensor product operation. To state the weak form of (2.5) let Y denote a Hilbert
space, defined with respect to Ω, and such that for any v ∈ Y , S(v) and E(v) are
meaningful in L2 sense. We define the affine subspace and subspace

YD :=
{
v ∈ Y | v = u∂Ω on ∂Ω

}
and Y0 := {v ∈ Y | v = 0 on ∂Ω} ,

respectively, and the functionals

(2.6) Bc(u,v) :=
∫

Ω

S(u) : E(v)dx and Gc(v) = 〈f ,v〉 for u ∈ Y and v ∈ Y0.

Then, a weak formulation of (2.5) is: given f ∈ (Y0)′, find u ∈ YD such that

(2.7) Bc(u,v) = Gc(v) ∀v ∈ Y0.

Note that, in practice, the operator E(·) is linear but, in general, S(·) is nonlinear.

3. Canonical form of blended AtC coupling models. In this section, we
propose a canonical structure for blended AtC coupling models for the zero tem-
perature case for which there are no time dependent effects. This structure is the
foundation of our abstract blended AtC coupling framework. We also comment on
the “ghost force” effect and give formal definitions for consistency and patch tests,
thereby providing tools for a rigorous assessment of blended AtC coupling methods.

7For simplicity, we consider only Dirichlet boundary conditions.
8In general these operators are tensor-valued.
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As mentioned in Section 1, the problem domain Ω is partitioned into the nonover-
lapping subdomains Ωa, Ωb, and Ωc as sketched in Figure 1.1.9 In particular, Ωb is in
between Ωa and Ωc. Let A, B, and C denote the labels associated with the particles
located in Ωa, Ωb, and Ωc, respectively; particles located on the interfaces between
Ωb and the other two subdomains are assigned to B. We assume that

• the atomistic model is valid throughout Ω, i.e., in (2.2), we may choose P =
A ∪ B ∪ C;

• solving (2.2) with P = A∪B∪C for the atomistic displacements is prohibitively
expensive; and

• the continuum model (2.5) is valid in Ωb and Ωc but not in Ωa.10

The basic principle behind the development of blended AtC coupling models is that
one can overcome the high expense associated with using the atomistic model through-
out the problem domain Ω by instead employing

• the continuum model in Ωc where it is valid;
• the atomistic model in Ωa where the continuum model is not valid;
• a blending11 of the two models over the region Ωb that connects the region

Ωa to the region Ωc.12

In the definitions of blended AtC coupling models, we make use of the atomistic
subspace and the atomistic affine subspace

Xab
0 := {(φα)|α∈A∪B | φ ∈ X0} and Xb

D := {(φα)|α∈B | φα ∈ XD},

respectively. Note that the elements of Xab
0 corresponding to the particles located

in Ωa ∩ Ωb whose positions are fixed by the boundary conditions vanish as do those
corresponding to all the particles located in Ωc. The elements of Xb

D corresponding to
the particles located in Ωa ∪Ωc vanish; those corresponding to particles located in Ωb
whose positions are fixed by the boundary condition satisfy the boundary condition
(2.1). We will also use the continuum subspace

Y bc0 := {v|Ωb∪Ωc | v ∈ Y0}

and the continuum affine subspaces

Y bcD := {v|Ωb∪Ωc | v ∈ YD} and Y bD := {v|Ωb | v ∈ YD}.

Note that the elements of Y bc0 vanish in both Ωa and on the boundary of Ωb ∩ Ωc
while the elements of Y bcD vanish in Ωa and satisfy the boundary condition (2.5b) on
the boundary segment (∂Ωb ∪ ∂Ωc) ∩ ∂Ω. The elements of Y bD vanish in Ωa ∪ Ωc; on
∂Ωb ∩ ∂Ω, they satisfy the boundary condition (2.5b).

9We do not notationally differentiate between open and closed domains; it should be clear from
the specific context which type of domain is being referred to.

10If the continuum model is also valid in Ωa there would be no need to consider the atomistic
model, i.e., one could presumably use the less expensive continuum model (2.7) throughout Ω. On
the other hand, if there is not a continuum model that can approximate the atomistic one in smooth
regions (where the Cauchy-Born hypothesis is valid), AtC algorithms are not suitable.

11As was pointed out in Section 1, care should be exercised when defining the combined model
over the region Ωb; in particular, one should not simply apply both models there in an additive
manner.

12An additional implementation principle motivated by efficiency considerations is that the regions
Ωa and Ωb in which the atomistic model is used should be as small as possible relative to Ωc, given
that one wants to achieve a certain overall accuracy.
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In view of the assumptions, principles, and definitions listed above, the canonical
blended AtC coupling model has the following form: find ψ ∈ XD and u ∈ Y bcD such
that

Baθ (ψ,φ; θa) + Bcθ(u,v; θc) = Gaθ (φ; θa) + Gcθ(v; θc) ∀φ ∈ Xab
0 , ∀v ∈ Y bc0(3.1a)

subject to ψα = u(xα) ∀α ∈ C \ (C ∩ D)(3.1b)

and C(ψ,u) = 0 for ψ ∈ Xb
D, u ∈ Y bD,(3.1c)

where we have
• the atomistic and continuum blending functions θa and θc, respectively, such

that θa ≥ 0, θc ≥ 0,

θa = 1 in Ωa, θc = 1 in Ωc, and θa + θc = 1 in Ω;

• the blended atomistic functionals Baθ (·, ·; θa) : XD ×Xab
0 → R and Gaθ (·; θa) :

Xab
0 → R such that

Baθ (ψ,φ; 1) = Ba(ψ,φ) and Gaθ (φ; 1) = Ga(φ) for all {ψ,φ} ∈ XD ×Xab
0 ;

• the blended continuous functionals Bcθ(·, ·; θc) : Y bcD × Y bc0 → R and Gcθ(·; θc) :
Y bc0 → R such that

Bcθ(u,v; 1) = Bc(u,v) and Gcθ(v; 1) = Gc(v) for all {u,v} ∈ Y bcD × Y bc0 ;

• a constraint operator C(·, ·) : Xb
D × Y bD → Q, where Q is a function space

whose definition depends on the particular nature of the constraints.
Specification of the functionals Baθ , Bcθ, Gcθ , and Gaθ defines particular blended AtC
coupling methods. In Section 4, we will define four such methods. The role of the
constraint operator C(·, ·) in (3.1c) is to enforce a suitable notion of continuity between
the atomistic and continuum displacements in Ωb. In Section 3.1, we will discuss some
example constraint operators and two ways to enforce this constraint.

The continuum blending function θc is required to satisfy the following property.
Assumption 3.1. For every v ∈ Y , we have that θcv ∈ Y .
Remark 3. The elements of the atomistic test function space Xab

0 in (3.1a) are
supported on A∪B so that the only atomistic force balance (or equilibrium) equations
included are those corresponding to the particles located in Ωa∪Ωb. Analogously, the
elements of the continuum test function space Y bc0 are supported on Ωb ∪ Ωc so that
continuum contributions from only that domain are included in (3.1a). It is important
to note the different causes for the restricted application of these two models. For
the atomistic case, we do not include force balance equations for particles located
in Ωc because of efficiency reasons, i.e., doing otherwise would make calculations
prohibitively expensive. On the other hand, restricting the continuum model to Ωb∪Ωc
is a matter of necessity since it has been assumed that that model is not valid in Ωa. �

Remark 4. Clearly, only one blending function need be introduced. Indeed, if we
choose a blending function θ such that 0 ≤ θ ≤ 1 throughout Ω, θ = 1 in Ωa, and
θ = 0 on Ωc, we can then set θa = θ and θc = 1−θ. The use of two blending functions
θa and θc instead of just one is purely for notational convenience. Usually, θ is chosen
to be a continuous function. A guiding principle behind its choice over Ωb is that it be
small near the interface between Ωb and Ωc (so that θa is small there) and that it be
near one near the interface between Ωa and Ωb (so that θc is small there.) Methods
for constructing the blending function θ are discussed in [1]. �
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Remark 5. Only the atomistic force balance equations corresponding to the parti-
cles (located) in Ωa∪Ωb are included in (3.1a). However, those particles interact with
at least some of the particles in Ωc due to the nonlocal nature of the atomistic model.
Thus, in general, even if the test function φ is restricted to the particles in Ωa ∪ Ωb,
the functional Baθ (·, ·; θa) in (3.1a) includes the displacement of (at least some of) the
particles in Ωc as well as those in Ωa ∪Ωb. For this reason, the atomistic (affine) trial
space was chosen to be XD. Of course, we do not want to solve for the displacements of
the particles in Ωc; indeed, in (3.1a), we have not included the force balance equations
corresponding to those particles. Instead, whenever the displacement of a particle in
Ωc is needed in (3.1a), we assume that it is given by the continuum displacement at
the location of the particle.13 This assumption is embodied in (3.1b). �

Remark 6. Not properly accounting for the interactions between the particles in
Ωa ∪ Ωb and those in Ωc, e.g., restricting the atomistic trial space in (3.1) so that
only the particles in Ωa ∪ Ωb are included, results in neglecting the forces acting on
the particles in Ωa ∪ Ωb due to the particles in Ωc. This gives rise to what is known
as the ghost force effect [13,16].

The blended AtC coupling model (3.1) mitigates the ghost force effect in two
ways. First, as was just discussed, the interactions of particles located in Ωa ∪ Ωb
with those in Ωc is accounted for in (3.1a) and (3.1b). The latter, of course, only
provides an approximation to the displacement of the particles located in Ωc. Any
errors introduced through the use of (3.1b) are greatly reduced because the atomistic
force balance equations for the particles located in Ωa ∪ Ωb that are near Ωc involve
small values of the blending function Ωa (see Remark 4) and therefore make small
contributions to the overall coupled model.14 �

Remark 7. The continuum model has been assumed to be local in nature so that
its restriction to Ωb ∪ Ωc does not involve continuum displacements in Ωa. For this
reason, the continuum (affine) trial space was chosen to be Y bcD .

The ghost force effect that emanates when one neglects the interactions of particles
located in Ωa ∪ Ωb with those in Ωc has been much discussed. Less attention has
been paid to the inconsistency that occurs in the continuum model at the interface
between Ωa and Ωb. Typically, in AtC coupling models, the continuum model (2.5)
is not invoked in Ωa; see Remark 3. It is applied only on Ωb ∪ Ωc. Unfortunately,
there is no boundary condition available on the interface between Ωb ∪ Ωc and Ωa
that is part of the boundary of the former. Simply restricting the weak form (2.7) of
the continuum model to Ωb ∪Ωc implies the natural boundary condition S(u) ·n = 0
along that interface; in general, this relation is not valid there. Any bad effects due
to this discrepancy are greatly mitigated, even eradicated, in blended AtC coupling
models of the type (3.1) due to the fact that, if θ is chosen to be continuous, then
θc = 0 at the interface in question, and as a result, S(u) · n does not have to equal
zero there. �

3.1. Defining and enforcing the constraints. The blended AtC coupling
system (3.1) involves the constraint equation (3.1c). Before giving some examples of

13We are for now interested only in materials where this assumption is valid. In particular, we
exclude from Ωc multilattice materials or materials undergoing phase transitions.

14This is clearly the case for atomistic models for which each particle interacts only with other
particles that lie within a fixed ball from its position. However, even for the case for which each
particle interacts with all other particles, coupled AtC blending models can be defined for which
any error in the effects that the particles located in Ωc have on those located in Ωa ∪ Ωb is greatly
reduced due to the blending function θa.
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such constraints, we discuss, in general terms, the two ways in which they can be
enforced.

The first approach uses Lagrange multipliers to enforce the constraints and leads
to the mixed problem (see, e.g., [7]) given as follows: find ψ ∈ XD, u ∈ Y bcD , and
λ ∈ Q′ such that (3.1b) and

Baθ (ψ,φ; θa) + Bcθ(u,v; θc) +
〈(
δψC(ψ,u)

)
φ,λ

〉
+
〈(
δuC(ψ,u)

)
v,λ

〉
= Gaθ (φ; θa) + Gcθ(v; θc) ∀φ ∈ Xab

0 , v ∈ Y bc0

(3.2a)

〈C(ψ,u),µ〉 = 0 ∀µ ∈ Q′(3.2b)

are satisfied, where δψC(·, ·) and δuC(·, ·) denote the Gâteaux derivatives of C(·, ·) with
respect to ψ and u, respectively and Q′ denotes a Lagrange multiplier space whose
definition depends on the specific structure of the constraint operator C(·, ·). Since
the test functions φ ∈ Xab

0 and v ∈ Y bc0 may be chosen independently of each other,
(3.2) may be rewritten in the form

Baθ (ψ,φ; θa) +
〈(
δψC(ψ,u)

)
φ,λ

〉
= Gaθ (φ; θa) ∀φ ∈ Xab

0(3.3a)

Bcθ(u,v; θc) +
〈(
δuC(ψ,u)

)
v,λ

〉
= Gcθ(v; θc) ∀v ∈ Y bc0(3.3b)

〈C(ψ,u),µ〉 = 0 ∀µ ∈ Q′.(3.3c)

Note that in (3.3), coupling between the blended atomistic and continuum models
is effected solely through the Lagrange multiplier terms in (3.3a) and (3.3b) and, of
course, through the constraint equation (3.3c). Also note that after one discretizes the
continuum model and possibly the Lagrange multiplier in (3.3), the result involves not
only the atomistic degrees of freedom in A∪B and the continuum degrees of freedom
in Ωb ∪ Ωc, but also additional Lagrange multiplier degrees of freedom.

The alternate way to enforce the constraint (3.1c) is to restrict the atomistic and
continuum trial affine spaces Xb

D and Y bD, respectively, so that their elements satisfy
the constraint. Thus, we define the affine space

ZbD =
{
ψ ∈ Xb

D, u ∈ Y bD | C(ψ,u) = 0
}
.

Correspondingly, we define the subspace of test functions

Zb0 =
{
ψ ∈ Xb

0, u ∈ Y b0 | C(ψ,u) = 0
}
,

where Xb
0 and Y b0 have the obvious definitions. Then, (3.1) is equivalent to the

following problem: find {ψ,u} ∈ (Xa
D × Y cD)⊕ (Xb

D × Y bD)∩ZbD such that (3.1b) and

(3.4)
Baθ (ψ,φ; θa) + Bcθ(u,v; θc)

= Gaθ (φ; θa) + Gcθ(v; θc) ∀ {φ,v} ∈ (Xa
0 × Y c0 )⊕ (Xb

0 × Y b0 ) ∩ Zb0

are satisfied. Now, coupling between the atomistic and continuum models is effected
because the atomistic and continuum test functions φ and v, respectively, cannot
be chosen independent of each other, but are required to satisfy the constraint. In
particular, the division of (3.2a) into the two equations (3.3a) and (3.3b) that was
effected in the Lagrange multplier case is no longer possible. Also note that the
number of degrees of freedom in (a discretization of) (3.4) is less than for (3.3). In
fact, they are less than the sum of the number of atomistic degrees of freedom in A∪B
and the continuum degrees of freedom in Ωb ∪ Ωc.
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Remark 8. It is important to note that the two approaches for the enforcement
of constraints are equivalent in the sense that the solutions obtained using either
approach are identical. �

If a basis for Z0 is easy to construct, then the second approach is more appealing
since it involves fewer degrees of freedom. It is also more convenient for theoretical
analyses15 of AtC coupling methods because it does not require the consideration of
an additional inf-sup compatibility condition between the Lagrange multiplier space
and the atomistic and continuum spaces.

3.1.1. Example constraints. We briefly consider examples for the operator C
appearing in (3.1). While this operator can have a rather general form, here we focus
primarily on definitions of linear constraint operators. Thus, we consider constraints
of the type

Ca(ψ)− Cc(u) = 0 for ψ ∈ Xb
D, u ∈ Y bD,

where Ca(·) : Xb
D → Q and Cc(·) : Y bD → Q are linear operators.

A choice that allows for the elimination of all atomistic degrees of freedom in Ωb
from blended AtC coupling models is given by

(3.5) ψα = u(xα) ∀α ∈ B \ (B ∩ D)

so that Q = Xb
D. The particle displacements of the particles in Ωb are slaved to

the continuum displacements.16 Thus, the displacements of the particles in Ωb can
be easily eliminated from the set of degrees of freedom.17 The physical assumption
embodied in (3.5) is that the continuous (macroscopic) and atomistic (microscopic)
deformation fields should agree. This is precisely the case for a Cauchy-Born defor-
mation [6, 10].

Equation (3.5) is the “extreme” case of constraint equations of the type

(3.6) ψ = ΠB(u),

where ΠB : Y bD 7→ Xb
D is an expansion operator; in this case we have that Q = Xb

D.
Again, we say that, in Ωb, the particle displacements are slaved to the continuous
displacement field, but perhaps in a more complex manner than that for (3.5). As a
result, the degrees of freedom that determine the particle displacements in Ωb can be
easily eliminated.

In principle, one can instead define constraint operators of the type

(3.7) u = πb(ψ),

where now πb : Xb
D 7→ Y bD is a compression operator and Q = Y bD. Now, in Ωb,

the continuous displacement field is slaved to the particle displacements. As a result,

15Since (3.3) and (3.4) are equivalent; see Remark 8, their properties can be studied using either
one of them.

16In fact, they are slaved in exactly the same way as in (3.1b) for the particles in Ωc.
17In [3], a nonlinear version of (3.5) is used. Specifically, there it is required that

|ψα − u(xα)| = 0 ∀α ∈ B \ (B ∩ D),

where | · | denotes the Euclidean norm in Rd. Clearly, this constraint and the linear, vectorial version
(3.5) are the same. The nonlinear version requires fewer Lagrange multipliers (one instead of d per
particle) than does the linear version (3.5). On the other hand, for the linear version, it is much
easier to implement restrictions of the test and trial spaces that satisfy the constraint.
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the degrees of freedom that determine, e.g., the finite element approximation of the
continuous displacement in Ωb can be easily eliminated.

Remark 9. It is important to note that the use of, e.g., (3.5) to eliminate the
atomistic degrees of freedom in Ωb does not imply that the atomistic force balance
equations in the blending region Ωb are deleted from the blended AtC coupling model
(3.1) as is done in the quasi-continuum method [18]. What it does mean is that the
atomistic test function φ is constrained to satisfy φα = v(xα) for all α ∈ B \ (B∩D),
where v denotes the continuum test function. Thus, from (3.4), we have, for test
functions supported in Ωb, that (3.1a) reduces to a linear combination of the atomistic
and continuum models. �

For constraints of the type (3.6) or (3.7), one of the operators Ca and Cc is the
identity operator; as a result, either the atomistic or continuum degrees of freedom
can be easily eliminated. One can also define constraint equations for which neither
of these operators is so simple. Two such examples use a subdivision {Ωb,j}Jj=1 of
Ωb into J nonoverlaping, covering subdomains, i.e., Ωb,j ∩ Ωb,k = ∅ whenever j 6= k
and ∪Jj=1Ωb,j = Ωb. We denote the volume of Ωb,j by |Ωb,j |. This subdivision of Ωb
engenders the subdivision of {Bj}Jj=1 of B, where α ∈ Bj whenever xα ∈ Ωb,j . We
denote the number of particles located in Ωb,j by |Bj |. A constraint set that is less
stringent than (3.5) is then given by

1
|Ωb,j |

∫
Ωb,j

u dx =
1
|Bj |

∑
α∈Bj

ψα for j = 1, . . . , J .

If one approximates the integral in the left-hand side by a simple average, one obtains
the constraint equations

(3.8)
∑
α∈Bj

u(xα) =
∑
α∈Bj

ψα for j = 1, . . . , J .

In either case, we have that Q = RJd.
Comparing (3.5) and (3.8), we note that while the former relation slaves every

atomistic displacement to the continuum displacement field, the latter relates averages
of the atomistic displacement to averages of the continuum displacements. Constraints
such as (3.8) that involve linear combinations of displacement values are difficult to
enforce through restrictions of the test and trial spaces so that the Lagrange multi-
plier approach is more useful in this case.18 For the constraint equations (3.8), one
defines the Lagrange multipliers to be piecewise constant functions with respect to
the subdivision {Ωb,j}Jj=1 of Ωb.

3.2. AtC consistency and the patch test. This section introduces a well-
defined notion of AtC consistency and a patch test that can be used to evaluate AtC
coupled models.

Definition 3.1 (Consistency test problem). The set {χ,ψD;f ,u∂Ω} is called
a consistency test problem if the solutions ψ̃ and ũ of the global problems (2.3) and
(2.7), respectively,19 are such that C(ψ̃, ũ) = 0 holds on Ω.

18For constraints of the type (3.6) or (3.7), including the special case (3.5), restricting the test
and trial spaces is easily accomplished.

19Recall that {χ,ψD;f ,u∂Ω} provides the data for these two problems.
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Definition 3.2 (Patch test problem). A consistency test problem is called patch
test problem if the continuous component ũ of (ψ̃, ũ) is such that S(ũ) is constant,
i.e., ũ is a constant stress solution.

The following definitions formalize the notion of passing a patch test and a defi-
nition of consistency for an AtC coupling method.

Definition 3.3 (Passing a patch test problem). Assume that {χ,ψD;f ,u∂Ω} is
a patch test problem with solution (ψ̃, ũ). An AtC coupling method passes a patch
test if (ψ̃, ũ) satisfies the AtC coupled problem (3.3) or (3.4).

Definition 3.4 (AtC consistency). An AtC coupling method is consistent if, for
any consistency test problem, the pair (ψ̃, ũ) satisfies the coupled AtC system.

Atomistic problems with Cauchy-Born solutions (see [6,10]) are a physical exam-
ple of consistency test problems. From the previous definitions, one can easily infer
that consistency implies passage of the patch test problem. However, the converse
statement is not true.

4. Blended AtC coupling methods. In this section, we establish four general
paths for defining how the blended functionals Bcθ, Baθ , Gcθ , and Gaθ appearing in (3.1)
are obtained from the original atomistic and continuum functionals (2.4) and (2.6),
respectively. Then, we determine whether the four resulting classes of blended AtC
coupling methods are consistent and pass the patch test of Section 3.2.

We consider two different ways to define both the atomistic and continuum
blended functionals Baθ (ψ,φ; θa) and Bcθ(u,v; θc). The first way is to directly use
their respective unblended counterparts Ba(ψ,φ) and Bc(u,v) defined in (2.4) and
(2.6), respectively. We refer to this approach as external blending because the defini-
tions of the original atomistic and continuum functionals do not change. The second
possibility is to define the blended operators and functionals by carefully changing
their internal definitions. We refer to this approach as internal blending because it
requires changes to the definition of the atomistic and continuum functionals.

The specific choices we make are as follows. For the atomistic blended functional,
we have the choices

(4.1) Baθ (ψ,φ; θa) =


Ba(ψ,Θaφ) = (F (ψ),Θaφ) ⇐= external

or(
Fθ(ψ; θa),φ

)
⇐= internal

for all ψ ∈ XD and φ ∈ Xab
0 , where Θa is a diagonal weighting matrix whose diagonal

values are equal to θa evaluated at the corresponding particle positions:

(Θa)ijαβ = δijδαβθa(xα), for i, j = 1, . . . , d, α, β ∈ P.

A discussion about how Fθ(ψ; θa) may be defined is given in Section 5; further details
are given in [1].

For the continuum blended functional, we have the choices

(4.2) Bcθ(u,v; θc) =


Bc(u, θcv) =

∫
Ωb∪Ωc

S(u) : E(θcv)dx ⇐= external

or∫
Ωb∪Ωc

θcS(u) : E(v)dx ⇐= internal
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for all u ∈ Y bcD and v ∈ Y bc0 .
For either choice made in (4.1) and (4.2), the blended linear data functionals

appearing in (3.1) are defined as

(4.3) Gaθ (φ; θa) = Ga(Θaφ) = − (χ,Θaφ) = − (Θaχ,φ) ∀φ ∈ Xab
0

and

(4.4) Gcθ(v; θc) = Gc(θcv) = 〈f , θcv〉 = 〈θcf ,v〉 =
∫

Ωb∪Ωc

θcf · vdx ∀v ∈ Y bc0 ,

respectively. Note that we can restrict the integrals in (4.2) and (4.4) to Ωb ∪ Ωc by
virtue of the fact that, by the definition of the test space Y bc0 , the continuum test
function v is supported only within that subregion.

Because external and internal blending can be applied independently to the con-
tinuum and atomistic problems, it follows that we have a total of four possible choices
for the combined blending functional Ba(ψ,φ; θa) + Bcθ(u,v; θc) appearing in (3.1).
The four choices are summarized in Table 4.1

Table 4.1
Blended AtC coupling methods classified by blending types.

Blending approach
Method Atomistic Continuum

I external internal
II internal internal
III external external
IV internal external

In the next four sections, we discuss blended AtC coupling methods belonging to
each one the four classes and investigate their properties.

4.1. Method I. In this method, we use external atomistic blending and internal
continuum blending. Thus, (3.1) is given by: find ψ ∈ XD and u ∈ Y bcD such that
(3.1b), (3.1c), and

(4.5)

(
F(ψ),Θaφ

)
+
∫

Ωb∪Ωc

θcS(u) : E(v)dx

= − (χ,Θaφ) +
∫

Ωb∪Ωc

θcf · vdx ∀φ ∈ Xab
0 , v ∈ Y bc0

are satisfied. For this method, we have the following result.
Theorem 4.1. Method I defined by (4.5) is not consistent and does not pass the

patch test.
Proof. Let {ψ̃, ũ} be a solution of the consistency test problem defined in Section

3.2. Clearly Θaφ ∈ Xab
0 ⊂ X0 whenever φ ∈ Xab

0 so that, from (2.3), we have that

(4.6)
(
F(ψ̃),Θaφ

)
+ (χ,Θaφ) = 0 ∀φ ∈ Xab

0

so that the atomistic terms in (4.5) cancel.
From Assumption 3.1, we have that, for sufficiently smooth θc, θcv ∈ Y bc0 ⊂ Y0

whenever v ∈ Y bc0 . Then, from (2.7) and since E(·) is a linear operator, we have that∫
Ωb∪Ωc

θcS(ũ) : E(v)dx−
∫

Ωb∪Ωc

θcf · vdx = −
∫

Ωb∪Ωc

v · S(ũ) · E(θc)dx
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so that the continuum terms in (4.5) cancel if and only if

(4.7) S(ũ) · E(θc) = 0 almost everywhere in Ωb ∪ Ωc.

This relation is, in general, not true in Ωb. In particular, for a patch test problem,
(4.7) is only true if E(θc) = 0 in Ωb ∪ Ωc which in practice implies that θc must be
constant.20

Remark 10. Let us consider discretization of the continuum terms in (4.5) using
the finite element space Y h ⊂ Y h, the subspace Y h0 ⊂ Y0, and the affine subspace
Y hD ⊂ Y h along with a piecewise smooth approximation θhc of the blending function
θc, defined with respect to the same mesh. Then, we have the discretized problem:
find ψh ∈ XD and uh ∈ Y h,bcD such that

(4.8)
(F (ψh),Θaφ) +

∫
Ωb∪Ωc

θhc S(uh) : E(v)dx

= (χ,Θaφ) +
∫

Ωb∪Ωc

θhc f · vdx ∀φ ∈ Xab
0 , v ∈ Y h,bc0

is satified along with suitable discretizations of (3.1b) and (3.1c).
Note that, in general, θhc vh /∈ Y

h,bc
0 so that Assumption 3.1 applied to the discrete

spaces does not hold. As a result, Theorem 4.1 cannot be used to assert whether or
not (4.8) passes the patch test. However, the proof of that theorem can be easily
adapted to the discretized case. Given a consistency test solution {ψ̃h, ũh}, it is easy
to see that the atomistic terms in (4.8) again cancel. The finite element approximation
ũh of the solution of (2.7) satisfies∫

Ωb∪Ωc

S(ũh) : E(v)dx =
∫

Ωb∪Ωc

f · vdx ∀v ∈ Y h,bc0

so that, in general, the continuum terms in (4.8) do not cancel. Even if we were to
choose θhc to be a piecewise constant function with respect to the finite element mesh
in Ωb, the consistency condition would require that

∑
e

∫
Ωe

θhc S(ũh) : E(v)dx =
∑
e

∫
Ωe

θhc f · vdx,

where Σe denotes a sum over the finite elements. If θhc is piecewise constant, this
condition can only hold if∫

Ωe

S(ũh) : E(v)dx =
∫

Ωe

fṽhdx

with respect to every finite element Ωe. This is not true in general. �

20In the case of linear elasticity, (4.7) corresponds to

∇eu · ∇θc = 0 almost everywhere in Ωb ∪ Ωc.

As a result, Method I will pass a patch test if and only if ∇θc = 0 in Ωb ∪ Ωc. Since, by definition,
θc = 1 in Ωc and θc = 0 in Ωa, this relation is impossible to satisfy with θc continuous in Ω.
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4.2. Method II. The reason Method I fails to be consistent is that for a solution
of the consistency test problem, the atomistic terms in (4.5) vanish but the continuum
terms do not. For Method II, we modify the atomistic terms in the hope that, for such
solutions, they can “cancel” out the continuum terms. To this end, we use internal
atomistic and continuum blending. Thus, (3.1) is given by: find ψ ∈ XD and u ∈ Y bcD
such that (3.1b), (3.1c), and

(4.9)

(
Fθ(ψ; θa),φ

)
+
∫

Ωb∪Ωc

θcS(u) : E(v)dx

= − (χ,Θaφ) +
∫

Ωb∪Ωc

θcf · vdx ∀φ ∈ Xab
0 , v ∈ Y bc0

are satisfied.
The consistency of this method depends on the definition of the operator Fθ(·; θa).

The following theorem gives an abstract consistency condition for this operator.
Theorem 4.2. Under Assumption 3.1, Method II is consistent if the operator

Fθ(·; θa) is constructed in such a way that any consistency test problem solution {ψ̃, ũ}
satisfies

(4.10)
(
Fθ(ψ̃; θa),φ

)
−
(
F(ψ̃),Θaφ

)
= −

∫
Ωb∪Ωc

(
θcS(ũ) : E(v)−S(ũ) : E(θcv)

)
dx

for all φ ∈ Xab
0 and v ∈ Y bc0 . Method II passes the patch test if (4.10) is satisfied for

patch test solutions.
Proof. We have that Θaφ ∈ Xab

0 whenever φ ∈ Xab
0 and, by Assumption 3.1,

that θcv ∈ Y bc0 whenever v ∈ Y bc0 . Then, by definition, a consistency test problem
solution {ψ̃, ũ} satisfies(

F(ψ̃),Θaφ
)

= − (χ,Θaφ) ∀φ ∈ Xab
0 ⊂ X0

and

(4.11)
∫

Ωb∪Ωc

S(ũ) : E(θcv)dx =
∫

Ωb∪Ωc

θcf · vdx ∀v ∈ Y bc0 ⊂ Y0.

Using the last two equations, it is easily seen that a consistency test problem solution
{ψ̃, ũ} satisfies (4.9) only if (4.10) holds.

In [1], a specific choice for Fθ(·; θa) is defined that satisfies (4.10) for a particular
set of one-dimensional patch test problems. The choice can be mechanically justified
as a blended force balance. In Section 5, we show through numerical experimentation
that the method suggested there is much more accurate than Method I. Furthermore,
among the four methods we discuss here, Method II is the only method that leads to a
symmetric AtC coupling operator.21 This features of Method II has a positive effect
on its stability properties and results in symmetric linear systems that are easier to
solve than the nonsymmetric linear systems generated by the other three methods.

4.3. Method III. One of the assumptions used for the design of AtC coupling
algorithms is that the continuum model is a good approximation of the atomistic
model in Ωb and Ωc. This assumption implies that the continuum differential operator

21Of course, this is only possible when both the atomistic and continuum models are symmetric
to start with.
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L is a good representation of F under suitable conditions, e.g., smoothness. Thus,
a seemingly reasonable approach would be to blend the operators L and F . This
approach leads to the following blended AtC coupling method that uses external
atomistic and continuum blending: find ψ ∈ XD and u ∈ Y bcD such that (3.1b),
(3.1c), and

(4.12)

(
F(ψ),Θaφ

)
+
∫

Ωb∪Ωc

S(u) : E(θcv)dx

= − (χ,Θaφ) +
∫

Ωb∪Ωc

θcf · vdx ∀φ ∈ Xab
0 , v ∈ Y bc0

are satisfied.22

A positive feature of this approach that is not shared by the other three methods
is that for a consistency problem solution, the atomistic and continuum terms in
(4.9) separately cancel out; see (4.6) and (4.11). The following theorem is a direct
consequence of this observation.

Theorem 4.3. Under Assumption 3.1, Method III is consistent and therefore
passes the patch test.

4.4. Method IV. The fourth method can be viewed as a “dual” of Method I in
that it uses internal atomistic blending and external continuum blending. It is defined
as follows: find ψ ∈ XD and u ∈ Y bcD such that (3.1b), (3.1c), and

(4.13)

(
Fθ(ψ; θa),φ

)
+
∫

Ωb∪Ωc

θcS(u) : E(v)dx

= − (χ,Θaφ) +
∫

Ωb∪Ωc

θcf · vdx ∀φ ∈ Xab
0 , v ∈ Y bc0

are satisfied. In this case, the continuous terms cancel for any consistency problem
solution but the atomistic terms do not. As a result, this method is not consistent
and so it does not pass the patch test.

4.5. Summary and comparison of the four methods. We summarize and
compare the consistency of the four different methods in Table 4.2.

Table 4.2
Values of the atomistic and continuous contributions to the blended AtC coupling methods evaluated
at a consistency problem solution {eψ, eu}.

Method Baθ (ψ̃,φ)− Gaθ (φ) Bcθ(ũ,v)− Gcθ(v) Is it consistent?
I = 0 6= 0 No
II 6= 0 6= 0 Depends on Fθa
III = 0 = 0 Yes
IV 6= 0 = 0 No

At least two of the methods we have introduced have appeared previously. What
we refer to as Method I was described in [3]; see equations (10) and (11) of that paper;
Method II was introduced in [1, 11]. We also remark that Method I, III, IV do not
satisfy Newton’s third law over the blend region, and so these methods do not lead
to a symmetric formulation.

22This method can be understood as a residual blending method since it blends Lu − f and
F(ψ)− χ.



ON ATOMISTIC-TO-CONTINUUM COUPLING BY BLENDING 17

We also contrast AtC blending with the quasicontinuum method [18]. In a local
quasicontinuum method, the Cauchy-Born hypothesis [6] is used to eliminate degrees
of freedom in a particle model, lessening the computational complexity. The local
quasicontinuum approximation has no direct relation to blending. In certain circum-
stances, the local/nonlocal interface arising in the quasicontinuum method can be
viewed as the blending approach of Method II with a d − 1 dimensional interface;
see [8]. Furthermore, the forces in the quasicontinuum method are derived from a
global energy functional and obey Newton’s third law (or equivalently, the conserva-
tion of linear momentum).

5. Numerical Results. In this section, we report on the results of some simple
computations for one-dimensional problems that the illustrate results described in the
previous section.

In all cases, we use the following discrete system. Let Ω = (0, 1), Ωa = (0, a),
Ωb = (a, c), and Ωc = (c, 1), where 0 < a < c < 1. See Figure 5.1. In Ωc ∪Ωb = [a, 1],
we have a uniform finite element subdivision with grid size h given by xj = a+(j−1)h,
j = 1, . . . , J . We choose Wh to be the continuous, piecewise linear finite element
space with respect to this subdivision. In Ωa ∪Ωb = [0, c], we have a uniform particle
lattice23 with lattice spacing s given by xα = (α − 1)s, α = 1, . . . , N . The blending
functions read as:

θa(x) =


1, x ∈ Ωa
1− x−a

c−a , x ∈ Ωb
0, x ∈ Ωc

(5.1)

and θc = 1 − θa. Without loss of generality, we assume that the blending region
is defined by the finite element grid, i.e., we assume that the left-most and right-
most finite element nodes in the bridge region Ωb = [a, c] are located at x = a and
x = c, respectively. This assumption leads to a more convenient implementation of the
algorithm for problems in two or three-dimensional spatial regions. We will consider
both the cases of commensurate and non-commensurate grids, where commensurate
grids are such that the finite element grid size h is an integer multiple of the lattice
spacing s. Where necessary, “ghost” particles are included in Ωc to counteract ghost
forces.

Fig. 5.1. Particle positions and finite element grid for commensurate grids with h = 2s.

In Section 5.1, the displacement of a particle in the bridge region is constrained
to be the same as the continuum displacement at that point; see (3.5). A unit point
force is applied at the finite element node at the end point x = 1 and the displacement
of the particle located at the end point x = 0 is set to zero. Using either the atomistic
or finite element models, the resulting solution is one of uniform strain. Thus, we
want a blended model to also recover this solution.

23Recall that here x denotes positions in the reference, or undeformed configuration.
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In Section 5.2, we consider the effects of two different kinds of constraints.

5.1. Nonlocal atomic force model. We consider a simple nonlocal atomic
force model where every particle interacts with its two neighbors to the left and
to the right as a mass-spring system. Here we choose the nearest-neighbor elastic
modulus K1 = 50 and the second nearest-neighbor elastic modulus to be K2 = 25.
We then choose Kc = K1 + 2K2 = 100 so that the strain energies match exactly in
the case of a uniform deformation field. This choice should produce a uniform strain
of 0.01. For the all of the following four examples, we see that Method II fails the
patch test while Method III passes, as predicted.

Example 5.1. We have the simplest case possible: the lattice spacing s is equal
to the mesh width h so that there is a finite element node at every particle position.
Thus, the particle lattice and finite element grid are commensurate. We also have a
particle and a finite element node located at both x = a and x = c, the end points of
the bridge region. For Figure 5.2, we choose h = s = 0.05, 16 particles plus a ghost
particle, and 14 finite element nodes so that a = 0.35 and c = 0.8. That figure shows
the computed displacements and strains for Methods II and III. In this particular
example, the 16th atom from the left is not located at c, hence its associated blending
weight θa(x16) is not zero. To avoid the ghost forces associated with a missing bond
to the right, another atom is added to the right of node c. Its blending weight θa(x17)
is zero, since the atom is contained in Ωc, hence we need not be concerned with its
missing right bond.

Example 5.2. The set up of this example is the same as for Example 5.1, except
that we now set the mesh width h to be twice the lattice spacing s. Again, the particle
lattice and finite element grid are commensurate with no offset and we have a particle
and a finite element node located at both x = a and x = c, the end points of the
bridge region. We choose s = 0.05, 15 particles plus a ghost particle, and 8 finite
element nodes so that now a = 0.3 and c = 0.7. In Figure 5.3, we show the computed
displacements and strains.

Example 5.3. We next set h = 1.5s. The finite element grid and the particle
lattice are no longer commensurate. We still have both a particle and a finite element
node located at the points x = a and x = c. We choose s = 1/30, 19 particles plus
a ghost particle, and 15 finite element nodes so that a = 0.3 and c = 0.6. In Figure
5.4, we show the computed displacements and strains.

Example 5.4. This example is identical to Example 5.3, except that no particle
is located at x = a, the left-most finite element grid point, and x = c, the right-
most finite element grid point in the bridge region. In Figure 5.5, we show computed
displacements and strains for a case of 20 particles plus a ghost particle, and 16 finite
element nodes for Methods II and III.

5.2. Constraint operators and Lagrange multipliers. In this section, we
consider two different constraint operators. The first operator is the one defined
by (3.5) or (3.6), which enforces the atomistic solution to be identical to the finite
element solution. We denote this choice as the strong constraint. The other alternative
is to consider a weaker continuity of solutions where the mean value of atomistic and
continuum solutions must be equal at every finite element in the blending region,
i.e., we have that (3.8) holds with the subdivision {Ωb,j}Jj=1 being the same as the
finite element subdivision of Ωb. Consequently, we refer to this choice as the loose
constraint.

We start by analyzing Method III. Let us consider a uniform load over the whole
domain. The displacement for this AtC problem is shown in 5.6(a). Figure 5.6(b)
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Fig. 5.2. Displacements and strains for Example 5.1 at the particle positions ∗ and the finite
element nodes �. Vertical bars denote the bridge region.

compares the fully atomistic solution with the atomistic solution on the blending
domain, using strong and loose constraints, for a fixed finite element mesh. The loose
constraint allows the atomistic solution enough freedom to reproduce the curvature
seen in the fully atomistic one, leading to better results. The strong constraint is
too restrictive, forcing the atomistic solution to follow the finite element solution. It
substantially reduces the accuracy within the blending region.

The strong solution is related to the Lagrange multipliers space Q ≡ Xa, i.e., the
Lagrange multipliers are elements of the atomistic space restricted to the blending
region. On the contrary, the second choice is related to a finite element space Qh
composed by elementwise constant functions. In this last case, we approximate the
constraint ∫

Ωe

λ(u− πb(ψ))dΩ = λ

∫
Ωe

(u− πb(ψ))dΩ

' meas(Ωe)λ
∑
xα∈Ωe

(u(xα)−ψα),(5.2)

for every finite element on Ωb. This approximation reduces the computational cost,
without modifying the nature of the constraint.24 The strong constraint is simply

24Let us remark that the interatomic distance will vary smoothly in the blending region, assuming
a Cauchy-Born type solution.
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Fig. 5.3. Displacements and strains for Example 5.2 at the particle positions ∗ and the finite
element nodes �. Vertical bars denote the bridge region.

defined by (3.5). For numerical purposes, let us scale (3.5) with a characteristic
interatomic distance.

In Figure 5.7, we plot the Lagrange multiplier values for the strong constraint.
The atomistic lattice is kept constant whereas the mesh size of the finite element
problem is reduced, until reaching the value of the characteristic interatomic distance.
We can see the non-smooth nature of the Lagrange multiplier. In fact, this result is
in agreement with the stability discussion. The Lagrange multiplier is bounded in a
weak norm (a negative norm). Whereas the H1 norm blows up, the L2 Euclidean
norm tends to a constant value. This result also shows that the atomistic problem on
the blending region is over-constrained. We can also see the magnitude of the peaks
in Figure 5.7 clearly diminish as the mesh is refined.

Figure 5.8 shows the same test for the loose constraint. One important aspect
is the convergence of the Lagrange multiplier. In this case, the maximum values are
almost constant and the fully oscillatory behavior shown, for instance, in Figure 5.7(b)
is not present. Again, the L2 norm of the Lagrange multiplier does not blow up.25

When using a mass-spring system as the atomistic model with the appropriate
stiffness when the mesh size is equal to the characteristic interatomic distance, the
atomistic and finite element problems lead to the same discrete equations for the
inner atoms/nodes on the blending region. At these nodes, the AtC solution is also

25In fact, it goes to zero.
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Fig. 5.4. Displacements and strains for Example 5.3 at the particle positions ∗ and the finite
element nodes �. Vertical bars denote the bridge region.

the solution of the blended atomistic and finite element systems alone. Thus, the
Lagrange multiplier must only be different from zero on the extremes of the blending
region. That is, the Lagrange multipliers can be understood as point forces (on these
extremes) such that the two problems lead to the same result on the blending region.
See [12] for a similar discussion for continuum-to-continuum coupling.

The same numerical experiments have been carried out for Method II. In Figure
5.9, we show the Lagrange multipliers for strong coupling. The Lagrange multiplier
plots for loose coupling are collected in Figure 5.10. Again, the strong constraint leads
to highly oscillatory results. Better results are obtained using the looser constraint.
The main difference with respect to the results for Method III is the converged solution
when the mesh size is equal to the characteristic interatomic distance. The Lagrange
multipliers do not vanish in the interior of Ωb because neither the atomistic nor the
continuum problems alone are satisfied by the AtC solution at atoms/nodes in the
interior of Ωb. Furthermore, the maximum Lagrange multiplier value increases when
the mesh size is reduced.

Even though the characteristic interatomic distance is a physical parameter, it
is interesting to analyze the asymptotic behavior of the loose constraint when this
parameter tends to zero. In Figure 5.11, we see that the L2 norm does not blow up
when the interatomic distance tends to zero.

These computational experiments suggest a preference for the use of loose con-
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Fig. 5.5. Displacements and strains for Example 5.4 at the particle positions ∗ and the finite
element nodes �. Vertical bars denote the bridge region.

straints for AtC blended coupling. Furthermore, in contradiction to [12], the Lagrange
multiplier does not exhibit any instability for L2 coupling. This is of particular inter-
est, because the use of stronger H1 constraints is too expensive in AtC coupling.
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Fig. 5.6. Application of a uniform load over the problem domain. The AtC solution for Method
III is shown in (a) and strong and loose constraints compared in (b).
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Fig. 5.7. Lagrange multipliers for strong constraint and Method III. 513 atoms and nnd finite
element nodes on Ωb.

Finally, let us remark that, in order to mitigate ghost forces, we introduce ghost
particles in the continuum region.26 This saturates the bonds of the particles in
Ωb ∪ Ωc. These ghost particles are simply implemented as slaves of the continuum
displacement in Ωc (using the strong constraint (3.5)), without invoking the atomistic
problem. This is the difference between ghost particles and particles in the blending
region (for the strong constraint). In the first case the displacement is only determined
by the continuum model whereas in the second one by a blending between atomistic
and continuum problems.

6. Conclusions. In this article, we have introduced a novel mathematical frame-
work for describing AtC blended coupling techniques and outlined the two main in-
gredients for defining these methods. The first ingredient is the choice of blended
model on the blending region. In particular, we have shown four classes of atomistic-
to-continuum (AtC) blending methods. The second ingredient is the constraints that
must be enforced to provide continuity to the coupled solution.

The choice of how to enforce these constraints does not modify the final result,
but has important implications for the implementation of these methods. We have
considered two different choices: classical Lagrange multipliers, and restricted AtC
spaces whose elements explicitly satisfy the constraints.

This framework has been useful for the analysis of the consistency of the different

26In fact, only particles in the cut-off radius of particles in Ωb ∪ Ωc are needed.
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Fig. 5.8. Lagrange multipliers for loose constraint and Method III. 513 atoms and nnd finite
element nodes on Ωb.

methods. We have introduced a notion of consistency for AtC coupling methods,
formalized the notion of a patch test problem, the origin of ghost forces, and addressed
whether Newton’s third law is satisfied.

Finally, we have checked the theoretical consistency results through numerical
experimentation. We have studied the stability of the Lagrange multipliers, and have
discussed a good choice for the space of these Lagrange multipliers. We considered
two different cases, a space that over-constrains the atomistic solution and a looser
constraint that leads to better numerical results.

These results have allowed us to identify that the blended model introduced in [3]
is not consistent, and that the method suggested in [1] is more accurate. Finally, we
have suggested a new method that is consistent and passes any patch test problem
(in the sense introduced in the article).
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